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Protein function prediction, in the context of the Gene Ontology, is a task that consists
of answering, for a fixed protein X, a large number of binary questions of the form: “Does
protein X belong to GO term Y ?” Those binary classification problems are strongly related
because the ontology consists of nested classes. Two natural requirements for this prediction
problem are

• that the set of predictions be consistent, i.e., that if a protein is assigned a GO term,
then it is all also assigned all the ancester GO terms, and

• that high-confidence predictions can be produced with a quantified confidence level.

Methods of structured classification proposed in machine learning Taskar et al. [2003]
could in theory be used to tackle this problem. However, two practical difficulties that
need to be surmounted are the large amount of missing data and the large scale of the
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problem. To address both issues, our approach consists of first making partial predictions
for each term given each data type and then integrating all partial predictions to form a
set of consistent predictions whose confidence level can be estimated. We use calibration

methods to assign a confidence level to partial predictions and subsequently consider several
reconciliation methods to produce, for the whole ontology, a set of confidence levels that are
consistent in the sense that they naturally yield consistent predictions.

The presentation of the methods is organized as follows: in Sec. 1 the notions of calibra-
tion as it applies to our problem, the algorithm we use to obtain calibrated partial predictions
and generally relevant notations are introduced. In Sec. 2 the Bayesian formulations as well
as an efficient variational formulation to perform inference are presented. In Sec. 4, we
present algorithms based on projections of probability distributions.

1 Calibration

In statistics, the calibration of a prediction for the binary variable Y is a procedure which,
given some evidence X, returns a probability value in [0, 1] that reflects the confidence that
the predicted value is Y =1. From a Bayesian point of view a natural candidate is P (Y |X),
as obtained by Bayes’ rule, where X is some input variable that the prediction is based
on. Frequentists, on the other hand, define well-calibrated predictions as those that are
good estimates of their own success probability. Formally, S is a well-calibrated prediction if
P (Y = 1|S = p) = p. We refer the reader to the relevant literature Cohen and Goldszmidt
[2004]. The simplest frequentist method for calibration is the logistic regression, which as
suggested by Platt [1999] , can be used in combination with support vector machines (SVMs)
[Boser et al., 1992].

In the present work we are interested in calibrating jointly several related GO term
predictions. Extending the Bayesian approach to this structured problem is fairly natural
and has been explored for function prediction by Barutcuoglu et al. [2006]. Similarly, logistic
regression can be extended to the structured case by conditional random fields (CRFs). We
pursue yet another direction, in which the calibrated values obtained from individual logistic
regressions are combined to yield a set of consistent calibrated values. This type of problem
has been studied in the multiclass classification setting, where several class specific binary
classifiers are combined to predict a set of mutually exclusive classes Wu et al. [2003]. An
advantage of this approach is that the missing data are dealt with on a per term basis, which
is easier.

1.1 Constrained calibration and notations

Whereas the structure that is generally exploited in the multiclass setting is that classes
are mutually exclusive, here we wish to exploit the inclusion relations between GO terms.
The consequence of such structure on calibrated values is that confidence should decrease
along any lineage of the ontology. More formally, if in the ontology G, there is an edge
i→ j corresponding to GO term i being a parent of GO term j, by which we mean that
GO term j is included in GO term i, and if (pi)i∈I are confidence values, then we should
have pi ≥ pj. Notice that the ontology graph then defines a partial order on (pi)i∈I . This
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can be interpreted simply as the fact that confidence should decrease as one makes more
precise predictions; but because ideal calibrated values pi can be interpreted as probabilities,
one can further consider them as originating from a joint probability distribution P on a
set of binary random variables Y = (Yi)i∈I that are indicators for each term, such that
pi = P (Yi = 1) and, finally, such that for all edges i→j the implication (Yj = 1)⇒ (Yi = 1)
translates in probabilistic terms as P (Yi = 0, Yj = 1) = 0. The set of distributions satisfying
the implication (or inclusion) constraints of the graph is then

P⇒ = {P ∈ P | ∀(i, j) ∈ E, P (Yi = 0, Yj = 1) = 0 } ,

which is a subset1 of P≤ = {P ∈ P | ∀(i, j) ∈ E, pj≤pi }.
A subset that is easier to parameterize is the set of distributions in P⇒ that factorize

according to the graph G. To formally define this set, we introduce some notation that
we will use throughout this appendix. Denote by πi, ci, Ai and Di respectively the set of
parents, children, ancesters and descendants of a node i in G and denote by Yπi

=
∏

j∈πi
Yj as

well as yπi
=

∏

j∈πi
yj where yj ∈ {0, 1} is the value of a realization of Yj. The distributions

that factorize according to G can be defined formally as

PG =

{

P ∈ P |P (Y=y)=
∏

i∈I

P (Yi =yi|Yπi
=yπi

); ∀i, P (Yi =1|Yπi
=0)=0

}

.

An element of PG is completely characterized by its set of conditional distributions: qi =
P (Yi = 1|Yπi

= 1). The marginal probabilities (our calibrated values) can then be computed
immediately from the the conditionals:

pi = P (Yi =1) = qipπi
where pπi

= P (Yπi
=1) =

∏

j∈Ai

qj

and vice versa: the conditionals qi = pi

pπi

are easy to obtain from the marginals. Several of

the methods we consider require computing the entropy of the distribution. For distributions
in PG, the entropy has a simple analytical expression:

H(P ) = H(Y) =
∑

i∈I

H(Yi|Yπi
) =

∑

i∈I

H(Yi|yπi
=1)P(Yπi

= 1) =
∑

i∈I

h(qi)pπi

with h the binary entropy function defined by h(x) = x log x+(1−x) log(1−x). Finally, we
can consider the graph G−1 that inverts the parent-children relationships in G i.e. (i→ j ∈
G) ⇔ (i← j ∈ G−1). Another set of distributions factorizes according to G−1. If we define
Yci

= maxj∈ci
Yj, and similarly for yci

, then that set can be written as

PG−1

=

{

P ∈ P |P (Y=y)=
∏

i∈I

P (Yi =yi|Yci
=yci

); ∀i, P (Yi =0|Yci
=1)=0

}

We omit further details on PG−1

here.

1Although both sets P⇒ and P≤ have the same marginals.
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2 The Bayesian approach
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The principle of the Bayesian approach is to turn the decision problem “Does protein j

have function i?” into an inference problem. The answer to the question is encoded as a
binary number which is treated as a random variable. Initially, a prior joint distribution
for the binary Yi variables is chosen, and one assumes that given Yi = yi some evidence
xi is observed independently for each GO term according to p(xi|Yi = yi) = Li(yi), yi ∈
{0, 1}. Subsequently, using Bayes’ rule and appropriate computational methods the quantity
P (Y|X = x) is computed and used as the calibrated value. In the approach of Barutcuoglu
et al. [2006], the evidence is the output of an SVM classifier. It is natural to choose the prior
P0 in PG or PG−1

. If P0 ∈ P
G then P0(Y = y) =

∏

i∈I q
yiyπi

i0 (1− qi0)
yπi

−yi1{yi≤yπi
}, and the

posterior distribution is

P (Y = y|X = x) =
1

Z

∏

i∈I

q
yiyπi

i0 (1− qi0)
yπi

−yiLi(1)yiLi(0)1−yi (1)

Unless G is a tree, the posterior distribution is not in PG (or respectively in PG−1

if the
prior was a tree). The Bayesian formulation takes us naturally outside of the class of models
considered. A computational consequence is that, except in the tree case, calculating the
marginal probabilities, i.e., performing exact inference, becomes expensive, and approximate
inference is necessary. In Barutcuoglu et al. [2006], the authors use exact inference because
they limit their analysis to small graphs (personal communication). Approximate inference
can typically be performed using loopy belief propagation or some other variational method
[Wainwright and Jordan, 2003]. We present next an efficient variational inference algorithm
that fits well within our framework.

2.1 Variational inference in PG

The principle of variational inference is to write an optimization problem whose minimizer is
the set of marginal probabilities of the distribution, when the unnormalized exponential form
of that distribution is available, and use optimization algorithms to solve for the minimum
[Wainwright and Jordan, 2003]. Typically, if the inference involves finding the marginals,
say m, of a distribution Q ∈ P, where the latter is some exponential family, then the
unnormalized log-likelihood is a dot product 〈θ, φ(y)〉 between the vector of parameters θ

and some vector of sufficient statistics φ(y) such that m = E φ(Y), and the entropy of the
distribution can be written as a function of m: H(m). To a given P corresponds a set of
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possible marginals M. The variational inference problem can then be formulated as the
optimization problem:

max
m∈M

H(m) + 〈m, θ(x)〉

In the Bayesian inference situation presented above, taking the log of (1) we get the log of
the unnormalized log-likelihood and identify 〈φ(y), θ〉 =

∑

i

〈φi(yi, yπi
), θi(xi)〉 = yiyπi

ηi1 + (1−yi)yπi
ηi0 + yi`i(1) + (1− yi)`i(0) (2)

with, to match (1), ηi1 = log qi0, ηi0 = log(1−qi0) and `i(k) = log Li(k).
Taking expectations of (2) with respect to any distribution in P⇒ we get

〈m, θ〉 =
∑

i

〈mi, θi〉 = piηi1 + (pπi
−pi)ηi0 + pi`i(1) + (1− pi)`i(0) (3)

At this point, we still have to define the set of possible marginals. One of the difficulties
here is that the posterior distribution whose marginal we are after is in P⇒, but it is in
general not in PG. If we denote by M⇒ (resp. MG) the set of marginals obtainable from
joint distributions in P⇒ (resp. PG), then we can write our optimization problem as

max
m∈M⇒

H(m) + 〈m, θ〉

One typically appeals to variational inference in cases where the optimization problem is
intractable. An approximate variational inference method, instead of finding the exact set
of marginals, finds the closest set of marginals in a simpler distribution class. It turns out
that M⇒ is not easy to deal with: in particular the expression of H(m) for m ∈ M⇒ is
in general intractable. By contrast, PG is an easier distribution class for which entropy is
computed easily as we argued in Sec. 1.1. Therefore, we consider the approximate inference
problem

max
m∈MG

H(m) + 〈m, θ〉

Parametrizing this optimization problem with the conditionals qi and setting the gradient
to 0 we get the following fixed point equations:

log
qi

1−qi

= fi +
∑

k∈Di

[ fkqk + ηi0 + h(qk) ]
pπk

pi

(4)

with fi = ηi1 − ηi0 + `i(1) − `i(0). Note that, with the notations of (1), if we define q̃i

through a simple Bayes rule, we obtain q̃i

1−q̃i
= qi0Li(1)

(1−qi0)Li(0)
then fi = log q̃i

1−q̃i
. This suggest a

modification of the BPAL algorithm where this log-odds ratio is set with the output of a
logistic regression using q̃i = p̂i; we call that algorithm BPLR. Notice also that the equation
for qi given the other variables (4) is in closed form because qi cancels in the numerator and
denominator of

pπk

pi
=

∏

j∈Ak\(Ai∪{i})
qj. Because the function considered is strictly concave

with respect to each qi, enforcing the fixed point equation iteratively on the coordinates
performs coordinate ascent on the function and therefore converges to a local maximum.

5



3 Cascaded logistic regression

A major weakness of the Bayesian approach is that it requires the models for conditional
densities p(xi|Yi = yi) to be nearly correct, which is in general unlikely to be the case. In
other words, the method is not robust to model specification. The advantage of logistic
regression is precisely that it models P (Yi =yi|Xi =xi) directly. A way to construct a model
that approximates P (Y = y|X = x) in the case where the dependencies between terms are
taken into account is as follows. Assume that P (Y=y|X=x) is in PG so that it factorizes
according to the graph. This implies that

P (Y=y|X=x) =
∏

i

P (Yi =yi|Yπi
=yπi

, Xi =xi)

with P (Yi = 1|Yπi
= 0, Xi = xi) = 0. A natural candidate for P (Yi = 1|Yπi

= 1, Xi = xi) is
then a logistic regression. Fitting this model is very similar to fitting independent logistic
regressions except that only examples of proteins having all parents GO terms are used to fit
the model. That is also a weakness of that model: some training sets have very few negative
examples.

4 Projection methods

The methods presented so far to reconcile the predictions for different GO terms either
appeal to a generative model (e.g., the model of Barutcuoglu et al. [2006]) and model the
distribution of SVM outputs by some mixture of densities, which is quite far from optimal
from a calibration point of view (naive Bayes from the same densities is inferior to logistic
regression) or appeal to the more sophisticated machinery of CRFs, which are difficult to
implement and require a further step of learning.

In contrast, in this section, we propose methods that make direct use of the calibrated
values obtained from the logistic regressions and try to find the closest set of values that are
consistent with the ontology.

4.1 Isotonic regression

Denote by (p̂i)i∈I the set of calibrated values obtained from the logistic regressions. We
propose to find a set of marginal probabilities (pi)i∈I in M⇒ such that p̂i and pi are close
together. A first formulation could consist in choosing the `2 distance as a measure of
closeness. This approach yields the quadratic program (QP)

min
pi, i∈I

∑

i∈I

(pi − p̂i)
2

s.t. pj ≤ pi, (i, j) ∈ E

(IR)

This QP is known in the statistical literature as the isotonic regression problem. When
the inequality constraints correspond to a total order, then the problem is simpler, and an
efficient algorithm, PAVA [Barlow et al., 1972], is known to solve it. More generally, isotonic
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regression can be solved using an interior-point solver, provided the number of edges in
the graph is not too large. An approximate algorithm with complexity O(n2) was recently
proposed by Burdakov et al. [2006]. We use a simple algorithm based on iterations of PAVA
which approximates the solution. Instead of using the Euclidian distance, we consider the
Kullback-Leibler divergence D(pi‖qi) = pi log pi

qi
+ (1− pi) log 1−pi

1−qi
, which is more natural for

probability distributions. There are two ways to minimize simultaneously all term specific
KL-divergences, because the latter is not symmetric.

min
pi, i∈I

∑

i

D(p̂i‖pi)

s.t. pj ≤ pi, (i, j) ∈ E

(IR.2) or
min
pi, i∈I

∑

i

D(pi‖p̂i)

s.t. pj ≤ pi, (i, j) ∈ E

(LO-IR)

These two problems turn out to be closely related to the previous one: the solutions to (IR)
and (IR.2) are actually the same. The KKT conditions of (LO-IR) show that its solution can
be obtained by solving an isotonic regression on the log-odds ratios log p̂i

1−p̂i
with the same

inequalities and then mapping the obtained log-odds ratios back to probabilities.

4.2 Projections on PG

Note that in the previous section, even though we minimize a sum of KL-divergences between
pairs of marginals, we are actually not minimizing a KL-divergence between joint distribu-
tions. Another way of formulating a projection is as follows: define a joint distribution P̂

on the GO terms, where each individual term is independently Bernoulli distributed Ber(p̂i)
and find a joint distribution P which is close and satisfies the constraints, i.e., P ∈ P⇒. For
instance, the problem can be stated2 as min D(P‖P̂ ) s.t. P ∈ P⇒.

However, a generic distribution from P⇒ is not tractable for the reasons outlined previ-
ously. On the other hand, if we consider PG, then the problem becomes tractable. Using a
parameterization with conditional distributions qi the problem can be written as:

min
P∈PG

D(P‖P̂ ) = min
P∈PG

∑

i∈I

E P [Xi log p̂i + (1−Xi) log(1− p̂i)] + H(P )

= min
qi∈[0,1]n

∑

i∈I

[pi log p̂i + (1− pi) log(1− p̂i) + h(qi)pi]

with pi =
∏

j∈Ai
qj. We differentiate the above expression to find a stationary point:

∂

∂qi

= pπi
log

p̂i

1− p̂i

− pπi
log

qi

1− qi

+
∑

k∈Di

∂pπk

∂qi

h(qk) +
∂pk

∂qi

log
p̂k

1− p̂k

Because ∂pk

∂qi
= pk

qi
=

∏

j∈Ak\{i}
qj does not depend on qi, coordinate descent has the closed

form updates

log
pi

1− pi

= fi +
∑

k∈Di

[H(qk) + qkfk]
pπk

pi

(5)

with fi = log p̂i

1−p̂i
. Notice that the update rules for (5) and (4) are quite similar.

2Notice that the symmetric formulation with D(P̂‖P ) is excluded because it would require P � P̂ which
is not true for most P̂
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